Matrices are tables of numbers. The numbers are put inside big brackets. Matrices are given ‘orders’, which basically describe the size of the matrices. The order is the number of rows ‘by’ the number of columns. So a 2 by 3 matrix has 2 rows and 3 columns. Adding and Subtracting Adding and subtracting matrices

## Inequalities

a < b means a is less than b (so b is greater than a) a £ b means a is less than or equal to b (so b is greater than or equal to a) a ³ b means a is greater than or equal to b etc. a > b

## Indices

Indices/ Powers 3³ (‘3 to the power of 3’) and 5² (5 ‘to the power’ of 2) are example of numbers in index form. 3³ = 3×3×3 2¹ = 2 2² = 2×2 2³ = 2×2×2 etc. The ² and ³ are known as indices. Indices are useful (for example they allow us to represent

## What Is A Function?

A function is a rule which indicates an operation to perform. e.g. if f(x) = x² + 3 f(2) = 2² + 3 = 7 (i.e. replace x with 2) Functions can be graphed. For example, the graph of f(x) = 1/x is as follows: This is the same graph as y = 1/x,

## Flow Charts

Flow charts are a diagrammatic representation of a set of instructions which must be followed. Flow charts are made up of different boxes, which each have different functions. The flow chart above says think of a number, add 5 and multiply by 2. If the number is negative, make it positive. Flow charts are usually

## Factorising

Expanding Brackets Brackets should be expanded in the following ways: For an expression of the form a(b + c), the expanded version is ab + ac, i.e., multiply the term outside the bracket by everything inside the bracket (e.g. 2x(x + 3) = 2x² + 6x [remember x × x is x²]) For an expression

## Algebraic Fractions

When adding or subtracting algebraic fractions, the first thing to do is to put them onto a common denominator (by cross multiplying). e.g. 1 + 4 (x + 1) (x + 6) = 1(x + 6) + 4(x + 1) (x + 1)(x + 6) =

- « Previous Page
- 1
- …
- 3
- 4
- 5